

Potassium bicarbonate attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein and may promote calcium absorption

Short title: Effect of protein plus KHCO₃ on muscle and bone

Lisa Ceglia¹, Susan S. Harris¹, Steven A. Abrams², Helen M. Rasmussen¹, Gerard E. Dallal¹, Bess Dawson-Hughes¹

¹Jean Mayer United States Department of Agriculture Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, ²United States Department of Agriculture Children's Nutrition Research Center, Houston, TX 77030

Corresponding Author:

Lisa Ceglia, M.D.

Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University

711 Washington Street

Boston, MA 02111

617-556-3085 (voice)

617-556-3305 (fax)

lisa.ceglia@tufts.edu

Reprints will not be available.

Disclosure Statement: The authors have nothing to disclose.

Clinical Trial: NCT00730184

This material is based upon work supported by the U.S. Department of Agriculture, Agricultural Research Service, under agreement No. 58-1950-7-707. Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of the U.S. Dept of Agriculture.

Number of words (text): 3,770

Number of words (abstract): 242

Number of tables: 3

Number of figures: 4

Keywords: potassium bicarbonate; dietary protein; skeletal muscle; bone metabolism; urinary nitrogen excretion; IGF-1; calcium absorption; calcium excretion

ABSTRACT

Context: Protein is an essential component of muscle and bone. However, the acidic byproducts of protein metabolism may have a negative impact on the musculoskeletal system particularly in older individuals with declining renal function.

Objective: We sought to determine whether adding an alkaline salt, potassium bicarbonate (KHCO_3), allows protein to have a more favorable net impact on intermediary indices of muscle and bone conservation than it does in the usual acidic environment.

Design: 41-day randomized placebo-controlled double-blind study of KHCO_3 or placebo with a 16-day phase-in and 2 successive 10-day metabolic diets containing low (0.5 g/kg) or high (1.5 g/kg) protein in random order with a 5-day wash-out between diets.

Setting: Metabolic research unit.

Participants: 19 healthy subjects age 54-82.

Intervention: KHCO_3 (up to 90 mmol/day) or placebo for 41 days.

Main Outcome Measures: 24-hour urinary nitrogen excretion, IGF-1, 24-hour urinary calcium excretion, fractional calcium absorption.

Results: KHCO_3 reduced the rise in urinary nitrogen excretion that accompanied an increase in protein intake ($P=0.015$) and was associated with higher IGF-1 levels on the low protein diet ($P=0.027$) with a similar trend on high protein diet ($P=0.050$). KHCO_3 was also associated with higher fractional calcium absorption on the low protein diet ($P=0.041$) with a similar trend on the high protein diet ($P=0.064$).

Conclusions: In older adults, KHCO_3 attenuates the protein-induced rise in urinary nitrogen excretion and this may be mediated by IGF-1. KHCO_3 may also promote calcium absorption independent of the dietary protein content.

INTRODUCTION

Protein is an essential component of skeletal muscle and severe protein deficiency causes muscle wasting (1). Studies have demonstrated a positive association between dietary protein intake and lean body mass (2, 3), perhaps mediated by the anabolic hormone, IGF-1 (4). Other studies have suggested that high protein diets cause increased urinary nitrogen excretion due in part to muscle breakdown from the acidogenic component of dietary protein (5, 6). Diets rich in protein and low in fruits and vegetables result in a low-grade, chronic metabolic acidosis because the metabolism of protein releases noncarbonic acids (e.g., sulfuric acid) into the bloodstream in amounts that override the alkalinizing effect of potassium in vegetable foods (7). Conditions of chronic metabolic acidosis, such as chronic kidney disease and ketogenic weight loss diets, stimulate muscle breakdown (5, 8). Reversal of metabolic acidosis by administration of alkaline salts has been shown to decrease urinary nitrogen excretion, suggesting an attenuation of muscle breakdown (9, 10) but only one prior study has demonstrated such an effect in healthy adults on a high protein diet (11).

Dietary protein promotes peripubertal bone growth (4, 12), and has been positively associated with higher bone mass (13, 14) and lower hip fracture rates in adults (15, 16). However, dietary protein also appears to have some potentially adverse effects on calcium and bone metabolism. For example, protein has consistently been shown to increase urinary calcium excretion (17, 18), whereas it has had varying effects on calcium absorption (19-24). In addition, experimental increases in amino acid intakes have been shown to negatively influence bone remodeling (25). These adverse calcium and bone effects may result from the metabolic acid load that accompanies a high dietary protein intake. An acidic environment reduces osteoblastic activity (26), increases osteoclastic activity (27), and appears to have a direct physico-chemical effect on bone. Studies have found that the addition of alkaline salts lowered urinary calcium excretion (28, 29) and biochemical markers of bone turnover during short-term administration (29, 30) suggesting beneficial effects on bone preservation. A recent study showed that administration of an alkaline salt of potassium in rats in combination with a high protein diet improved calcium retention but failed to demonstrate beneficial skeletal effects (31). To our knowledge, there are no similar studies in humans.

The purpose of this study was to investigate whether the addition of an alkaline salt of potassium, potassium bicarbonate (KHCO_3), allows dietary protein to have a more favorable impact on indices of muscle and bone conservation than is observed in its usual acidic environment. We studied healthy older men and women because typical age-related declines in renal function may decrease their ability to compensate for protein-induced metabolic acidosis and alkali therapy may prevent this from occurring.

METHODS

Study design and subjects

This was a double-blind, randomized placebo-controlled study that was conducted at the Metabolic Research Unit at the Jean Mayer United States Department of Agriculture (USDA) Human Nutrition Research Center on Aging (HNRCA) at Tufts University. The Tufts Medical Center-Tufts University Health Sciences Campus Institutional Review Board approved the study, and written informed consent was obtained from each subject.

Subjects were given up to 90 mmol/day KHCO_3 or placebo for 41 days. A computer-generated randomization scheme was used for block randomization of subjects within sex and age (50 to 64 and 65 and older) strata. Subjects underwent a 16-day phase-in to reach a maximal KHCO_3 (or placebo) dose of 90 mmol/day, and then 2 successive 10-day metabolic diet periods containing either low (0.5 g/kg/day) or high (1.5 g/kg/day) protein in random order, with a 5-day wash-out period in-between on their usual diets (Figure 1). Blood, urine and fractional calcium absorption analyses were performed after each diet period.

Healthy men and postmenopausal women age 50 and older were recruited through direct mailings and local newspaper advertisements and prescreened by telephone. Prior to study entry, subjects were screened with a medical history, physical examination, and fasting blood and urine tests within 6 months

of the study start date. Exclusion criteria included $\text{BMI} \geq 38 \text{ kg/m}^2$, vegetarianism, use of medications including oral glucocorticoids, estrogen, osteoporosis medications, thiazide diuretics, and nonsteroidal anti-inflammatory drugs, medical conditions including kidney stones, cirrhosis, gastroesophageal reflux, active hyperparathyroidism, untreated thyroid disease, significant immune disorders, unstable heart disease, adrenal insufficiency, primary aldosteronism, Bartter's syndrome, diabetes mellitus, total hip BMD T-score <-3.0 , creatinine clearance $<50 \text{ ml/min}/1.73 \text{ m}^2$ of body surface area, 24-hour urinary calcium excretion (UCa) $>300 \text{ mg/day}$, abnormal serum calcium, elevated alkaline phosphatase, and serum 25-hydroxyvitamin D [25(OH)D] level $<16 \text{ ng/ml}$.

Twenty-six subjects were screened and 23 were enrolled. Subjects were asked to maintain their usual diet, exercise level, and body weight, to discontinue their own calcium and vitamin D supplements, and to avoid bicarbonate- or potassium-rich products during the study. Three individuals randomized to the KHCO_3 group discontinued the study for reasons unrelated to treatment. Twenty subjects (11 in the placebo group and 9 in the KHCO_3 group) completed the study. One subject on placebo was excluded from this analysis because of a suspected acid-base disorder as indicated by a 10-fold higher net acid excretion compared with the mean in other subjects, a low urine pH, and a 3-fold higher n-telopeptide level. Characteristics of the 19 subjects included in this analysis are shown in Table 1.

Diet, supplements and physical activity

Usual nutrient intakes were assessed by food frequency questionnaire (32) before subjects started the study pills. During the two 10-day metabolic diet cycles, all food and caloric beverages were provided by the Metabolic Research Unit as a 3-day cycle menu. Each subject was studied on a low and a high protein diet. The low protein diet contained 0.5 g/kg/day of protein from natural foods, mainly meat. The high protein diet contained an additional 1.0 g/kg/day of dietary protein, as lean meat. The contents of the daily diet, calculated with version 4.05 of the University of Minnesota Food and Nutrient Database 34, are shown in Table 2. Phosphorus intake was higher on the high protein diet because meat contains significant amounts of phosphorus. We chose not to balance the phosphorus in the two diets in order to simulate the real life setting. During the study, caffeine-containing beverages were limited to 12 ounces daily and alcohol was not permitted. Subjects came in ≥ 3 times per week to eat a meal, pick up their food, and be weighed. The research dietitian assessed adherence to the diet by reviewing self-report food intake checklists, and returned uneaten food and food containers at each visit. Adjustments in the foods provided were made to optimize adherence and maintain body weight. Each day during the study, subjects took a supplement tablet containing 600 mg of calcium, 266 mg of phosphorus, 125 IU of vitamin D₃, 50 mg of magnesium (Posture D, US Rhodia) and a multivitamin (CVS brand) containing 400 IU of vitamin D₃ with the evening meal.

Leisure, household, and occupational activity were assessed on days 1 and 41 with the Physical Activity Scale for the Elderly (PASE) questionnaire (33).

Study capsules and dosing schedule

Capsules containing 7.5 mmol of KHCO_3 and matching placebo capsules were made by a local compounding pharmacy. Subjects started on 3 capsules daily (one after each meal), and gradually increased the dose by 3 capsules every 3 days to a maximum daily dose of 12 capsules (90 mmol/day; 4 capsules after each meal with 8 ounces of water), which they took thereafter throughout the study. If a subject developed gastrointestinal distress on the pills, the dose was cut back by 3 capsules per day, and escalated again three days later, as tolerated. A safety serum potassium level was drawn following the 16-day phase-in, but no hyperkalemia was observed.

Biochemical measurements

Blood was drawn after a 12-hour overnight fast and between 7:00 and 10:00 am. All samples from individual subjects were batched for analyses with the exception of the serum potassium measurement on day 17 (a safety measurement). Serum 25(OH)D was measured with radioimmunoassay kits from Diasorin (Stillwater, MN) with coefficients of variation (CV) of 5.6-7.7%. Serum intact PTH,

IGF-1, IGFBP-3, and osteocalcin were measured by chemiluminescent immunoradiometric assays on an automated immunoassay system, (IMMULITE® 1000, Diagnostic Product Corporation, Los Angeles, CA). The CV for this assay ranged from 3.0-9.0%. Serum calcium, potassium, phosphorus, and 24-hour urinary sodium (UNa), potassium (UK) and creatinine (UCr) were measured on an automated clinical chemistry analyzer (Olympus AU400, Olympus America Inc., Melville, NY). The CVs for these assays ranged from 3.0-6.0%. 24-hour UCa was measured by direct-current plasma emission spectroscopy (Beckman SpectraSpan VI Direct Current Plasma Emission Spectrophotometer, Beckman Instruments, Fullerton, CA) with a CV of 3-5%. 24-hour urinary n-telopeptide (UNTX) was measured by enzyme-linked immunosorbant assays (Wampole, Princeton, NJ), with a CV of 5.6-7.7%. 24-hour urinary nitrogen (UNi) was measured with a model FP-2000 nitrogen/protein determinator (LECO, St. Joseph, MI), which employs a Dumas combustion method and detection using a thermal conductivity cell. It measures nitrogen with a precision of 15 ppm. 24-hour net acid excretion (NAE) was measured by a modification of the Jorgensen titration method (34), as described by Chan (35). NAE = titratable acid + $\text{NH}_4^+ - \text{HCO}_3^-$. Briefly, titratable acid - HCO_3^- was assessed after addition of HCl, boiling the sample, and then titrating the sample to neutral pH. To measure the NH_4^+ , formol was added to the sample to release the H^+ from NH_4^+ and the sample was again titrated to neutral pH. All titrations were carried out with a TIM 900 Titration Manager (Radiometer Analytical-Loveland, CO). The precision of NAE measurements in our laboratory was determined by analyzing aliquots of a single 24-hour urine collection on 15 different days. The aliquots were stored frozen at -20 degrees C and thawed only once. The CV of these measurements was 10.1%.

Calcium absorption

Calcium absorption was measured in each subject on the last day of each metabolic diet period with use of dual tracer stable isotope technique (36). A two-week interval was needed between these measurements in order to clear much of the stable isotopes after the first administration (thus the 5-day gap between the two diet cycles). On the last day of each diet cycle, subjects arrived at the center after an overnight fast, had a peripheral intravenous catheter placed, and were given breakfast. Toward the end of breakfast, subjects were given ^{44}Ca (15 mg for subjects weighing <80 kg and 23 mg for those ≥ 80 kg) that had been mixed in 240 ml of calcium-fortified Minute Maid orange juice (340 mg of calcium). The breakfast and tracer drink combined contained a total of 400 mg of calcium. Two hours after breakfast, ^{42}Ca (1-1.5 mg for subjects weighing <80 kg and 2.3 mg for those weighing ≥ 80 kg) was infused over 2 minutes intravenously. A 24-hour urine collection began immediately after the oral tracer was administered with breakfast. When the collection was completed, an aliquot was prepared and analyzed by the method of Chen et al. (37). The $^{42}\text{Ca}/^{44}\text{Ca}$ ratio was measured by a magnetic sector inductively coupled plasma mass spectrometer (ICP-MS, Bremen, Germany). Fractional calcium absorption was determined as the ratio of the cumulative oral tracer recovery to the cumulative intravenous tracer recovery in the 24-hour urine collections obtained post-dosing. The precision of this method is <1%. The stable isotopes were purchased from Trace Sciences International Corp. (Richmond Hill, ON, Canada). The isotopic enrichments for these tracers were >95%. Tracers were prepared by the Tufts Medical Center Research Pharmacy and were tested for sterility and pyrogenicity prior to use.

Dual-energy x-ray absorptiometry

Bone mineral density (BMD) of the total hip and whole skeleton and whole-body soft-tissue composition were measured at the beginning of the study with a model Prodigy dual-energy x-ray absorptiometry scanner (GE-Lunar, Madison, Wisconsin). CV's were <1% for the hip BMD and lean body mass, as described previously (38).

Statistical Analysis

For the analyses of the dietary protein effect, urine measurements were not corrected for creatinine, because UCr excretion is dependent upon protein intake; in analyses of the KHCO_3 effect, urine measurements were expressed as a ratio to UCr. Subject characteristics in the KHCO_3 and placebo

groups and unadjusted differences between groups were compared using t-tests for 2 independent samples. Paired t-tests were used to assess the effects of dietary protein on outcome variables in the placebo group. Pearson correlation coefficients were used to describe linear associations. Analysis of covariance was used to compute and compare means adjusted for various variables across groups. Two-sided P values less than 0.05 were considered to indicate statistical significance. Statistical analyses were conducted with SPSS v. 15.0 (SPSS Inc., Chicago, IL).

RESULTS

The placebo group included a few more women; as a result, a trend toward lower body weight was observed in this group ($P=0.061$, Table 1) and intakes of total energy and some nutrients were lower (Table 2). Otherwise, characteristics of the two groups did not differ significantly.

Neither body weight nor physical activity changed significantly during the study in either treatment group ($P>0.270$) and changes in these measures did not differ between groups ($P>0.545$). The 25(OH)D levels at the end of the study were similar in the two groups (27.9 ± 3.3 ng/ml in the placebo group, 26.3 ± 3.9 in the KHCO_3 group, $P=0.353$). Adherence (mean \pm SD) to study pills for the placebo and KHCO_3 groups respectively was $95\pm8\%$ and $94\pm8\%$ during the 41-day study period. Adherence to the dietary supplements during the same period was $99\pm1\%$ in the placebo group and $97\pm8\%$ in the KHCO_3 group.

Effects of Dietary Protein

The effects of dietary protein on indices of muscle and bone metabolism were examined in the 10 placebo subjects. In these subjects, an increase in dietary protein intake was associated with significant increases in NAE (by 12.6 ± 8.1 mEq/L, $P=0.001$), UNi (by 9.1 ± 2.2 g, $P<0.001$), IGF-1 (by 24.3 ± 18.1 ng/ml, $P=0.002$) and UCa (by 44.8 ± 47.9 mg, $P=0.016$, Figure 2a) and a decrease in PTH (by -6.9 ± 8.8 pg/ml, $P=0.037$). In contrast, changes in fractional calcium absorption (Figure 2b), IGFBP-3, serum calcium, phosphorus, osteocalcin, and UNTX were not statistically significant.

Effects of KHCO_3

Supplementation with KHCO_3 had the expected effects of lowering NAE and increasing UK on both diets (Table 3). The muscle, calcium, and bone indices during each diet cycle and the changes in these indices with an increase in dietary protein were compared across the two treatment groups (Table 3). The rise in UNi to creatinine ratio (UNi/Cr) with an increase in protein intake was less in the KHCO_3 group than the placebo group ($P=0.015$, Figure 3). KHCO_3 supplementation was also associated with higher IGF-1 levels on the low protein diet ($P=0.027$) with a similar trend on high protein diet ($P=0.050$). There was no statistically significant difference in IGFBP-3 levels between the KHCO_3 group and the placebo group (Table 3). Notably, adjustment for IGF-1 level on either diet eliminated the statistically significant effect of KHCO_3 on the change in UNi with an increase in protein intake ($P>0.125$ for treatment effect after adjustment). In addition, in all 19 subjects, the change in UNi with an increase in protein intake was inversely correlated with IGF-1 level both on the low protein diet ($r= -0.650$, $P=0.003$; Figure 4a) and the high protein diet ($r= -0.480$, $P=0.036$; Figure 4b).

Fractional calcium absorption was higher in the KHCO_3 group than the placebo group on the low protein diet ($P=0.041$), and there was a similar trend on the high protein diet ($P=0.064$, Table 3). In all 19 subjects, fractional calcium absorption and IGF-1 were positively correlated on the high protein diet ($r=0.507$, $P=0.027$; Figure 4d) but not on the low protein diet ($r=0.216$, $P=0.374$; Figure 4c). The change in fractional calcium absorption with an increase in protein had no association with the change in IGF-1 with an increase in protein ($r=0.079$, $P=0.747$, $n=19$).

UCa to creatinine ratio (UCa/Cr) did not differ significantly in the two groups on either diet (Table 3), and the change in UCa/Cr with an increase in protein intake also did not differ significantly in the two groups ($P=0.252$, Table 3). Adjustment for urinary sodium to creatinine (UNa/Cr) excretion did not substantially alter these results.

The groups did not differ in mean serum PTH on either diet, and the groups had mixed changes in PTH with an increase in protein (Table 3). We did not observe significant effects of either KHCO₃ treatment or protein intake on serum calcium, phosphorus or markers of bone turnover (Table 3). UNa/Cr was higher in the KHCO₃ group than the placebo group on the low protein diet (P=0.037, Table 3), but not on the high protein diet.

Adverse Effects

Two subjects in the KHCO₃ group reported transient gastroesophageal complaints (one had epigastric discomfort and one had 2 episodes of emesis).

DISCUSSION

Supplementation with 90 mmol/day of KHCO₃, which resulted in a net alkali-producing intake, reduced by almost 50% the rise in urinary nitrogen excretion that accompanied increased protein intake in healthy older men and women. In our subjects, who were on fixed protein intakes and had stable weight and physical activity, this reduction in urinary nitrogen excretion can be considered an indicator of reduced muscle wasting. These findings add to those from a study by Frassetto et al. (11) in which 60-120 mmol of KHCO₃ daily for 18 days in 14 healthy postmenopausal women on constant high protein diets (about 1.6 g/kg/day), resulted in a significant reduction in total urinary nitrogen excretion from 14.0±0.6 to 13.2±0.5 g/day (P<0.001).

The fact that IGF-1 was higher in the KHCO₃ group than the placebo group after each metabolic diet period suggests that it was increased by KHCO₃ supplementation. IGFBP-3 levels in the KHCO₃ group did not differ significantly from the placebo group. These results are consistent with a study in which healthy adults given ammonium chloride to induce metabolic acidosis had significant decreases in serum IGF-1 and no change in IGFBP-3 (39). That decrease in IGF-1 was attributed to an impaired hepatic IGF-1 response to circulating growth hormone, similar to that seen in prolonged fasting and in protein deprivation. Our study provides the first evidence that ingestion of alkali may increase serum IGF-1 levels in healthy older men and women. Since adjustment for IGF-1 eliminated the significant effect of KHCO₃ treatment on protein-induced increases in nitrogen excretion, our study also provides evidence that IGF-1 may be the mediator of a beneficial KHCO₃ effect on muscle.

Calcium absorption on low protein was greater in the KHCO₃ group than the placebo group with a similar trend on high protein, suggesting that it may be increased by KHCO₃. However, Sebastian et al. who studied 18 women on and then off KHCO₃ and observed no change in calcium absorption 12 days after the KHCO₃ treatment was stopped (29). The positive correlation that we observed between calcium absorption and IGF-1 suggests that IGF-1 may mediate a positive effect of KHCO₃ on calcium absorption. IGF-1 has been shown to promote calcium absorption in aged female rats (40), but there are no comparable data in humans. Contrary to our expectations, given our diet-induced rise in IGF-1 and previous evidence that protein promotes an increase in calcium absorption (22), we did not observe an effect of increased protein intake on calcium absorption. Differences in our results are not likely to be methodological since we used a dual-tracer stable isotope method as used in the prior study (22). Possible explanations are that Kerstetter et al. (22) kept phosphorus content constant whereas we allowed it to increase on a high protein diet and that both studies were quite small. Our null finding is in agreement with prior balance studies (23, 24), two isotopic studies (19, 20), and a radiotracer study (21).

In healthy adults, KHCO₃ and other alkali therapy have been found to reduce urinary calcium excretion in the setting of acidogenic diets (28, 29). The hypocalciuric effect of KHCO₃ is presumably due to its neutralization of the acidic environment known to release calcium from bone as a buffer (30). There was a small decrease in urinary calcium excretion in the KHCO₃ group compared to the placebo group, but this reduction was not large enough to be statistically significant in this study. We did, however, confirm previous observations that increased dietary protein intake leads to increased calcium excretion (18, 22). The source of the calciuria does not appear to be from increased intestinal absorption;

other possibilities include altered endogenous fecal calcium excretion and bone. Notably, the studies that have documented calciuria have generally been short in duration.

We did not confirm prior reports of a beneficial KHCO_3 effect on markers of bone turnover (29, 30) and detected no effect of increased dietary protein intake on osteocalcin and urinary n-telopeptide, in agreement with some (21, 22, 31), but not other prior studies (29).

This pilot study had some important strengths including the fact that the dose of KHCO_3 effectively neutralized the protein-related acid load, our subjects' adherence to and persistence in the study were high, and we used the gold-standard dual-tracer stable isotope method for measuring calcium absorption. We chose a parallel arm design to study the KHCO_3 effect. A crossover design, as used to study the dietary protein effect, would have added power to observe a KHCO_3 effect; however, we wanted to avoid potential carryover effects of KHCO_3 , which has no well-established washout period. The primary limitation of this study was that we did not have baseline samples for the KHCO_3 and placebo groups for study endpoints. In addition, the small sample size may have prevented us from detecting some clinically meaningful effects. Lastly, our findings pertain to high-dose KHCO_3 supplementation that caused a net alkali-producing intake; thus, we cannot comment on the degree to which these findings may vary at other doses.

In conclusion, supplementation with KHCO_3 attenuates the urinary nitrogen excretion that accompanies an increase in dietary protein, suggesting that the net effect of dietary protein on muscle may be enhanced by reducing its accompanying acid load. KHCO_3 supplementation was also associated with higher fractional calcium absorption, independent of protein intake. Moreover, the KHCO_3 -induced nitrogen sparing and enhanced calcium absorption appear to be mediated by IGF-1, which was higher on the KHCO_3 supplementation. A higher protein intake increased urinary calcium excretion, but not calcium absorption. Larger long-term studies are needed to establish whether KHCO_3 supplementation is a worthwhile strategy for reducing age-related muscle wasting and bone loss and to test the hypothesis that IGF-1 is a mediator of such effects.

ACKNOWLEDGEMENT

We thank the Metabolic Research Unit at the Jean Mayer USDA HNRCA at Tufts University and the staff at the USDA/ARS Children's Nutrition Research Center at Baylor College of Medicine for their work on the study. LC was supported by grant DK007651. This research was supported by the Unilever Corporate Research, Bedfordshire, UK.

REFERENCES

1. **Balint JP** 1998 Physical findings in nutritional deficiencies. *Pediatr Clin North Am* 45:245-260
2. **Piatti PM, Monti F, Fermo I, Baruffaldi L, Nasser R, Santambrogio G, Librenti MC, Galli-Kienle M, Pontiroli AE, Pozza G** 1994 Hypocaloric high-protein diet improves glucose oxidation and spares lean body mass: comparison to hypocaloric high-carbohydrate diet. *Metabolism* 43:1481-1487
3. **Leidy HJ, Carnell NS, Mattes RD, Campbell WW** 2007 Higher protein intake preserves lean mass and satiety with weight loss in pre-obese and obese women. *Obesity (Silver Spring)* 15:421-429
4. **Rizzoli R, Bonjour JP** 2004 Dietary protein and bone health. *J Bone Miner Res* 19:527-531
5. **Bell JD, Margen S, Calloway DH** 1969 Ketosis, weight loss, uric acid, and nitrogen balance in obese women fed single nutrients at low caloric levels. *Metabolism* 18:193-208
6. **Vazquez JA, Adibi SA** 1992 Protein sparing during treatment of obesity: ketogenic versus nonketogenic very low calorie diet. *Metabolism* 41:406-414
7. **Lennon EJ, Lemann J, Jr., Litzow JR** 1966 The effects of diet and stool composition on the net external acid balance of normal subjects. *J Clin Invest* 45:1601-1607
8. **Garibotto G, Russo R, Sofia A, Sala MR, Sabatino C, Moscatelli P, Deferrari G, Tizianello A** 1996 Muscle protein turnover in chronic renal failure patients with metabolic acidosis or normal acid-base balance. *Miner Electrolyte Metab* 22:58-61
9. **Gougeon-Reyburn R, Lariviere F, Marliss EB** 1991 Effects of bicarbonate supplementation on urinary mineral excretion during very low energy diets. *Am J Med Sci* 302:67-74
10. **Papadoyannakis NJ, Stefanidis CJ, McGeown M** 1984 The effect of the correction of metabolic acidosis on nitrogen and potassium balance of patients with chronic renal failure. *Am J Clin Nutr* 40:623-627
11. **Frassetto L, Morris RC, Jr., Sebastian A** 1997 Potassium bicarbonate reduces urinary nitrogen excretion in postmenopausal women. *The Journal of clinical endocrinology and metabolism* 82:254-259
12. **Bonjour JP, Ammann P, Chevalley T, Rizzoli R** 2001 Protein intake and bone growth. *Can J Appl Physiol* 26 Suppl:S153-166
13. **Promislow JH, Goodman-Gruen D, Slymen DJ, Barrett-Connor E** 2002 Protein consumption and bone mineral density in the elderly : the Rancho Bernardo Study. *Am J Epidemiol* 155:636-644
14. **Hannan MT, Felson DT, Dawson-Hughes B, Tucker KL, Cupples LA, Wilson PW, Kiel DP** 2000 Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. *J Bone Miner Res* 15:710-720
15. **Wengreen HJ, Munger RG, West NA, Cutler DR, Corcoran CD, Zhang J, Sassano NE** 2004 Dietary protein intake and risk of osteoporotic hip fracture in elderly residents of Utah. *J Bone Miner Res* 19:537-545
16. **Munger RG, Cerhan JR, Chiu BC** 1999 Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. *Am J Clin Nutr* 69:147-152
17. **Allen LH, Oddo EA, Margen S** 1979 Protein-induced hypercalciuria: a longer term study. *Am J Clin Nutr* 32:741-749
18. **Kerstetter JE, Allen LH** 1990 Dietary protein increases urinary calcium. *J Nutr* 120:134-136
19. **Dawson-Hughes B, Harris SS** 2002 Calcium intake influences the association of protein intake with rates of bone loss in elderly men and women. *Am J Clin Nutr* 75:773-779
20. **Heaney RP** 2000 Dietary protein and phosphorus do not affect calcium absorption. *Am J Clin Nutr* 72:758-761
21. **Roughead ZK, Johnson LK, Lykken GI, Hunt JR** 2003 Controlled high meat diets do not affect calcium retention or indices of bone status in healthy postmenopausal women. *J Nutr* 133:1020-1026

22. **Kerstetter JE, O'Brien KO, Caseria DM, Wall DE, Insogna KL** 2005 The impact of dietary protein on calcium absorption and kinetic measures of bone turnover in women. *J Clin Endocrinol Metab* 90:26-31

23. **Hegsted M, Linkswiler HM** 1981 Long-term effects of level of protein intake on calcium metabolism in young adult women. *J Nutr* 111:244-251

24. **Schuette SA, Linkswiler HM** 1982 Effects on Ca and P metabolism in humans by adding meat, meat plus milk, or purified proteins plus Ca and P to a low protein diet. *J Nutr* 112:338-349

25. **Zwart SR, Davis-Street JE, Paddon-Jones D, Ferrando AA, Wolfe RR, Smith SM** 2005 Amino acid supplementation alters bone metabolism during simulated weightlessness. *J Appl Physiol* 99:134-140

26. **Sprague SM, Krieger NS, Bushinsky DA** 1994 Greater inhibition of in vitro bone mineralization with metabolic than respiratory acidosis. *Kidney Int* 46:1199-1206

27. **Arnett TR, Spowage M** 1996 Modulation of the resorptive activity of rat osteoclasts by small changes in extracellular pH near the physiological range. *Bone* 18:277-279

28. **Lemann J, Jr., Gray RW, Pleuss JA** 1989 Potassium bicarbonate, but not sodium bicarbonate, reduces urinary calcium excretion and improves calcium balance in healthy men. *Kidney Int* 35:688-695

29. **Sebastian A, Harris ST, Ottaway JH, Todd KM, Morris RC, Jr.** 1994 Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. *N Engl J Med* 330:1776-1781

30. **Maurer M, Riesen W, Muser J, Hulter HN, Krapf R** 2003 Neutralization of Western diet inhibits bone resorption independently of K intake and reduces cortisol secretion in humans. *Am J Physiol Renal Physiol* 284:F32-40

31. **Mardon J, Habauzit V, Trzeciakiewicz A, Davicco MJ, Lebecque P, Mercier S, Tressol JC, Horcajada MN, Demigne C, Coxam V** 2008 Long-term intake of a high-protein diet with or without potassium citrate modulates acid-base metabolism, but not bone status, in male rats. *J Nutr* 138:718-724

32. **Block G, Woods M, Potosky A, Clifford C** 1990 Validation of a self-administered diet history questionnaire using multiple diet records. *J Clin Epidemiol* 43:1327-1335

33. **Washburn RA, Smith KW, Jette AM, Janney CA** 1993 The Physical Activity Scale for the Elderly (PASE): development and evaluation. *J Clin Epidemiol* 46:153-162

34. **Jorgensen K** 1957 Titrimetric determination of the net excretion of acid/base in urine. *Scand J Clin Lab Invest* 9:287-291

35. **Chan JC** 1972 The rapid determination of urinary titratable acid and ammonium and evaluation of freezing as a method of preservation. *Clin Biochem* 5:94-98

36. **Yergey AL, Abrams SA, Vieira NE, Aldroubi A, Marini J, Sidbury JB** 1994 Determination of fractional absorption of dietary calcium in humans. *J Nutr* 124:674-682

37. **Chen Z, Griffin IJ, Kriseman YL, Liang LK, Abrams SA** 2003 Inductively coupled plasma mass spectrometric analysis of calcium isotopes in human serum: a low-sample-volume acid-equilibration method. *Clin Chem* 49:2050-2055

38. **White J, Harris SS, Dallal GE, Dawson-Hughes B** 2003 Precision of single vs bilateral hip bone mineral density scans. *J Clin Densitom* 6:159-162

39. **Brungger M, Hulter HN, Krapf R** 1997 Effect of chronic metabolic acidosis on the growth hormone/IGF-1 endocrine axis: new cause of growth hormone insensitivity in humans. *Kidney Int* 51:216-221

40. **Fleet JC, Bruns ME, Hock JM, Wood RJ** 1994 Growth hormone and parathyroid hormone stimulate intestinal calcium absorption in aged female rats. *Endocrinology* 134:1755-1760

Legends for Figures

Figure 1. *Study design. Randomization to placebo or KHCO_3 on day 1. 16-day phase-in period followed by two successive 10-day metabolic diets (low protein: 0.5 g/kg/day or high protein: 1.5 g/kg/day) in random order with a 5-day washout period in between.*

Figure 2. *(a)UCa and (b) fractional calcium absorption on the low and high protein diets in the placebo group ($n=10$). Each line with open circles represents an individual subject. The line with the black-filled square is the mean. The P value identifies the statistical difference between levels of protein.*

Figure 3. *Dot plot of the change (high – low protein diet) in UNi/Cr by treatment group. Each open circle represents the change for an individual subject. The cross (+) represents the mean change in each group. P for difference between groups = 0.015.*

Figure 4. *a) IGF-1 on low protein and change (high-low protein) in UNi ($r= -0.650$, $P=0.003$, $n=19$, placebo = empty circles; KHCO_3 = filled circles); b) IGF-1 on high protein and change (high-low protein) in UNi ($r= -0.480$, $P=0.036$); c) IGF-1 on low protein diet and fractional calcium absorption on low protein ($r=0.216$, $P=0.374$); d) IGF-1 on high protein and fractional calcium absorption on high protein ($r=0.507$, $P=0.027$)*

Table 1. *Subject characteristics prior to study entry*

	Placebo (mean \pm SD)	KHCO ₃ (mean \pm SD)
N	10	9
Female (N)	8	5
Age (yr)	62 \pm 7	62 \pm 9
Height (cm)	164.15 \pm 6.27	164.78 \pm 8.74
Weight (kg)	64.08 \pm 3.73	72.38 \pm 12.50
BMI (kg/m ²)	23.9 \pm 2.3	26.6 \pm 3.7
Lean body mass (kg)	40.45 \pm 5.63	43.39 \pm 11.51
Total hip T-score	-0.43 \pm 0.72 ^a	-0.08 \pm 0.74
25(OH)D (ng/ml)	26.20 \pm 6.75	23.11 \pm 6.25
PTH (pg/ml)	46.5 \pm 7.7 ^b	47.4 \pm 10.4 ^b
Serum calcium (mg/dl)	9.11 \pm 0.37	9.12 \pm 0.19
24-h UCa (mg)	102.9 \pm 55.5	115.5 \pm 61.1
24-h UCa/Cr (mg/g)	87.4 \pm 45.3	99.9 \pm 40.0
Total energy intake (kcal/d)	1491.5 \pm 412.1	1558.0 \pm 551.8
Dietary protein intake (g/d)	69.1 \pm 22.1	73.0 \pm 29.9
Dietary potassium intake (mg/d)	2909.1 \pm 650.0	2605.7 \pm 1023.6
Dietary calcium intake (mg/d)	697.9 \pm 258.4	898.6 \pm 635.2
Dietary sodium intake (mg/d)	2830.0 \pm 997.1	2471.3 \pm 1091.9
PASE score	175.3 \pm 49.3 ^c	167.9 \pm 74.1 ^c

To convert values for 25(OH)D to nmol/L, multiply by 2.5; serum PTH to pmol/L, multiply by 0.11; serum calcium to mmol/L, multiply by 0.25; UCa to mmol, multiply by 0.025; UCa/Cr ratio to mmol/mol, multiply by 2.82.

^a Total hip T-score measurements available on 8 subjects in the placebo group.

^b PTH levels were drawn on 8 KHCO₃ and 8 placebo subjects approximately 5 months prior to the start of the study.

^c PASE was available for 8 subjects in KHCO₃ group and 9 subjects in the placebo group.

Table 2. Daily nutrient contents of the 10-day low protein and high protein metabolic diets in the two groups

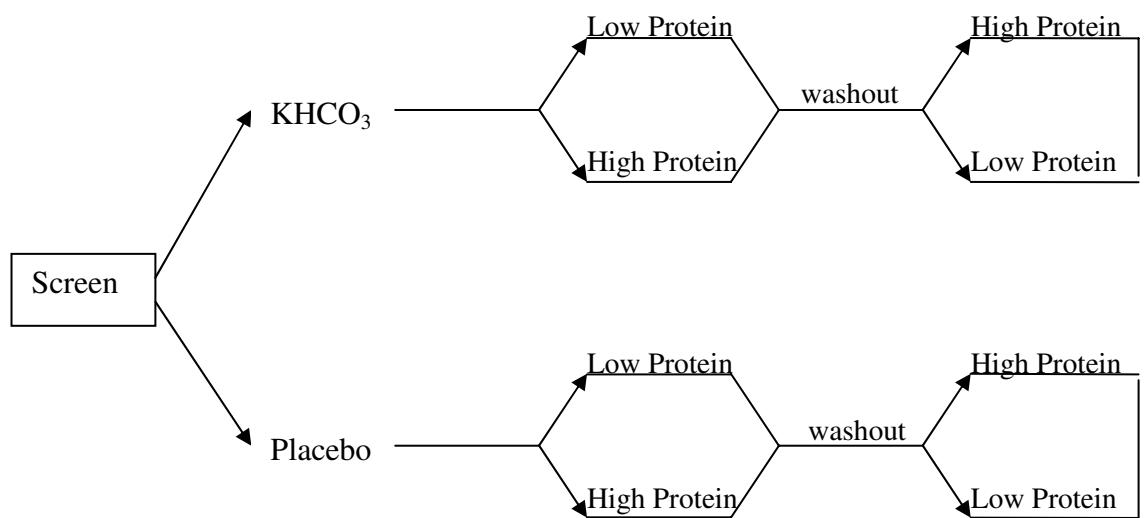
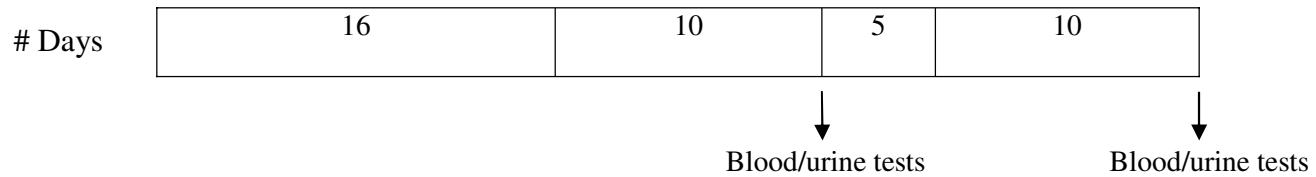
	Placebo (mean \pm SD)	KHCO ₃ (mean \pm SD)
Energy (kcal/d)		
<i>Low</i>	1990.7 \pm 142.3	2168.1 \pm 240.9
<i>High</i>	2160.9 \pm 72.9	2401.1 \pm 271.0 ^a
Total fat (g/d)		
<i>Low</i>	105.4 \pm 8.7	117.7 \pm 16.0 ^a
<i>High</i>	84.0 \pm 3.8	100.6 \pm 16.0 ^a
Total carbohydrate (g/d)		
<i>Low</i>	238.7 \pm 16.0	251.4 \pm 20.7
<i>High</i>	255.6 \pm 6.6	265.8 \pm 16.1
Total protein (g/d)		
<i>Low</i>	32.1 \pm 2.02	36.1 \pm 5.2 ^a
<i>High</i>	96.7 \pm 5.7	109.2 \pm 17.7 ^a
Protein (g/kg/d)		
<i>Low</i>	0.50 \pm 0.01	0.50 \pm 0.02
<i>High</i>	1.51 \pm 0.02	1.51 \pm 0.04
Total dietary fiber (g/d)		
<i>Low</i>	15.6 \pm 1.4	16.2 \pm 2.1
<i>High</i>	14.8 \pm 0.4	15.2 \pm 1.1
Calcium (mg/d) ^b		
<i>Low</i>	586.1 \pm 6.3	583.8 \pm 13.7
<i>High</i>	602.0 \pm 4.9	590.1 \pm 10.3 ^a
Phosphorus (mg/d) ^b		
<i>Low</i>	688.3 \pm 50.6	739.8 \pm 63.6
<i>High</i>	1125.0 \pm 55.4	1210.4 \pm 133.4
Magnesium (mg/d) ^b		
<i>Low</i>	197.5 \pm 12.6	209.3 \pm 21.4
<i>High</i>	244.1 \pm 9.0	254.0 \pm 21.7
Sodium (mg/d)		
<i>Low</i>	2496.7 \pm 140.0	2624.3 \pm 143.4
<i>High</i>	2565.0 \pm 106.9	2704.7 \pm 139.5 ^a
Potassium (mg/d)		
<i>Low</i>	2298.5 \pm 128.2	2396.4 \pm 235.0
<i>High</i>	2348.9 \pm 43.0	2504.4 \pm 225.3 ^a

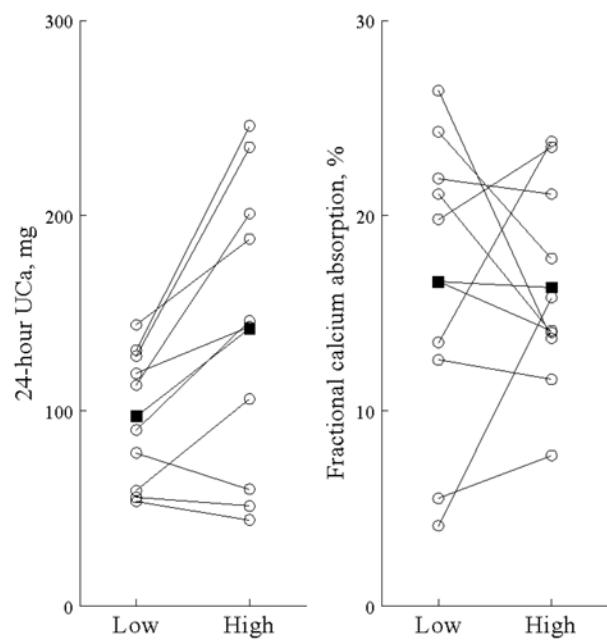
^aDiffers from the placebo group within diet P<0.05.

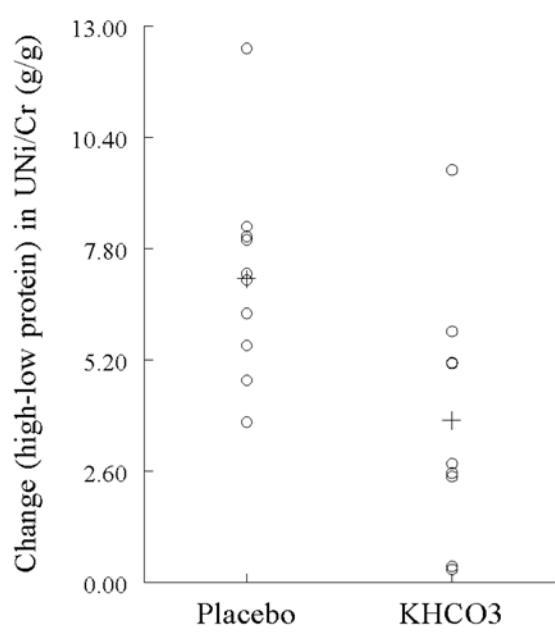
^bEach subject also received a supplement containing 600 mg of calcium, 266 mg of phosphorus, 50 mg of magnesium

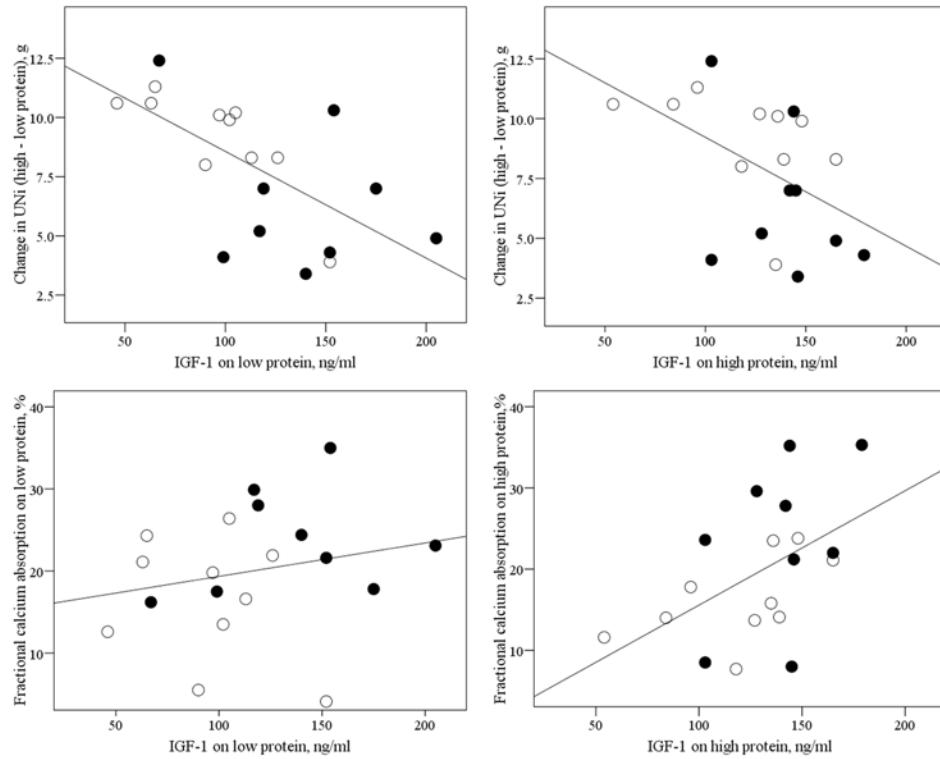
Table 3. Serum and urine biochemistry at the end of the low and high protein diets and changes in these measurements with an increase in dietary protein in the two groups.

	Low Protein (Mean±SD)	High Protein (Mean±SD)	Change (Mean±SD)
Serum			
IGF-1 (ng/ml)			
<i>Placebo</i>	95.9±31.7	120.2±33.2	24.3±18.1
<i>KHCO₃</i>	136.4±41.3 ^a	139.4±25.3 ^b	3.0±25.6 ^c
IGF BP-3 (ug/ml)			
<i>Placebo</i>	4.12±0.69	4.24±0.72	0.12±0.44
<i>KHCO₃</i>	4.57±1.09	4.57±0.70	0.00±0.54
Osteocalcin (ng/ml)			
<i>Placebo</i>	6.2±2.6	6.9±4.3	0.6±3.6
<i>KHCO₃</i>	6.7±3.8	6.6±2.9	-0.1±2.6
PTH (pg/ml)			
<i>Placebo</i>	46.2±10.6	39.3±12.8	-6.9±8.8
<i>KHCO₃</i>	35.2±13.8	38.8±13.3	3.6±8.9 ^c
Calcium (mg/dl)			
<i>Placebo</i>	9.15±0.40	9.00±0.27	-0.14±0.39
<i>KHCO₃</i>	9.02±0.21	8.96±0.54	-0.07±0.60
Phosphorus (mg/dl)			
<i>Placebo</i>	3.71±0.40	3.49±0.42	-0.22±0.38
<i>KHCO₃</i>	3.57±0.52	3.43±0.55	-0.13±0.37
24-hour urine			
UCr (g)			
<i>Placebo</i>	1.03±0.25	1.20±0.29	0.17±0.42
<i>KHCO₃</i>	1.04±0.39	1.30±0.39	0.26±0.21
24-hour urine corrected for creatinine			
UNi/Cr (g/g)			
<i>Placebo</i>	4.2±0.8	11.3±2.2	7.1±2.4
<i>KHCO₃</i>	5.9±3.0	9.7±2.4	3.8±3.0 ^c
UCa/Cr (mg/g)			
<i>Placebo</i>	101.0±48.4	121.3±70.9	20.3±52.4
<i>KHCO₃</i>	108.7±60.4	110.0±62.1	1.3±26.8
UNTX/Cr (nmol/mmol)			
<i>Placebo</i>	41.0±15.2	40.4±19.1	-0.6±14.0
<i>KHCO₃</i>	37.1±10.5	35.1±7.0	-2.0±5.8
UNa/Cr (mEq/g)			
<i>Placebo</i>	99.1±28.5	93.8±24.1	-5.2±37.4
<i>KHCO₃</i>	136.4±42.8 ^a	107.3±25.2	-29.2±34.9
UK/Cr (mEq/g)			
<i>Placebo</i>	53.9±15.1	49.5±17.7	-4.3±18.7
<i>KHCO₃</i>	140.2±55.0 ^a	110.9±28.2 ^a	-29.3±38.1
NAE/Cr (mEq/g)			
<i>Placebo</i>	10.2±9.1	33.9±8.2	31.9±24.3
<i>KHCO₃</i>	-55.0±34.6 ^a	-23.1±22.0 ^a	23.7±12.4
Calcium Absorption			
Fractional calcium absorption (%)			
<i>Placebo</i>	16.6±7.6	16.3±5.2	-0.27±7.6
<i>KHCO₃</i>	23.7±6.3 ^a	23.5±10.0 ^d	-0.3±7.0



To convert values for IGF-1 to $\mu\text{g/L}$, multiply by 1.0; osteocalcin to $\mu\text{g/L}$, multiply by 0.17; serum PTH to pmol/L , multiply by 0.11; serum calcium to mmol/L , multiply by 0.25; serum phosphorus to mmol/L , multiply by 0.32; UCr to mmol , multiply by 8.84; UNi/Cr to mmol/mmol , multiply by 4.04; UCa/Cr ratio to mmol/mol , multiply by 2.82.


^aDiffers from placebo group within diet at $P<0.05$.


^bDiffers from placebo group within diet at $P=0.05$


^cChange differs from placebo group at $P<0.05$

^dDiffers from placebo group within diet at $P=0.064$

