

Clinical Cancer Research

Androgen Receptor Levels and Association with PIK3CA Mutations and Prognosis in Breast Cancer

Ana M. Gonzalez-Angulo, Katherine Stemke-Hale, Shana L. Palla, et al.

Clin Cancer Res 2009;15:2472-2478. Published online March 10, 2009.

Updated Version Access the most recent version of this article at:
doi:[10.1158/1078-0432.CCR-08-1763](https://doi.org/10.1158/1078-0432.CCR-08-1763)

Cited Articles This article cites 34 articles, 6 of which you can access for free at:
<http://clincancerres.aacrjournals.org/content/15/7/2472.full.html#ref-list-1>

Citing Articles This article has been cited by 7 HighWire-hosted articles. Access the articles at:
<http://clincancerres.aacrjournals.org/content/15/7/2472.full.html#related-urls>

E-mail alerts [Sign up to receive free email-alerts](#) related to this article or journal.

Reprints and Subscriptions To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions To request permission to re-use all or part of this article, contact the AACR Publications Department at permissions@aacr.org.

Androgen Receptor Levels and Association with PIK3CA Mutations and Prognosis in Breast Cancer

Ana M. Gonzalez-Angulo,^{1,2} Katherine Stemke-Hale,² Shana L. Palla,⁵ Mark Carey,² Roshan Agarwal,² Funda Meric-Bertram,³ Tiffany A. Traina,⁶ Clifford Hudis,⁶ Gabriel N. Hortobagyi,¹ William L. Gerald,⁷ Gordon B. Mills,² and Bryan T. Hennessy^{2,4}

Abstract **Purpose:** To examine the androgen receptor (AR) levels in breast cancer and to assess the impact of AR expression on patient outcomes.

Experimental Design: Reverse-phase protein arrays were used to measure AR levels and a mass spectroscopy – based approach was used to detect *PIK3CA* mutations. Means and SDs were generated for AR levels. Linear regression models were used to determine if AR levels differed by tumor subtype and *PIK3CA* mutation status. Two-sample *t* tests were used to identify pair-wise differences. Survival probabilities were estimated with the use of the Kaplan-Meier product and log-rank test.

Results: The median age was 59 years (23–89 years). Significant differences in AR levels existed among different breast tumor subtypes (highest in estrogen receptor – positive and/or progesterone receptor – positive tumors) as well as by *PIK3CA* mutation status ($P < 0.0001$ for both). AR levels were significantly higher in breast tumors with kinase domain *PIK3CA* mutations versus tumors that are wild type or with *PIK3CA* helical mutations ($P = 0.017$ and $P < 0.0001$, respectively). In 347 patients, dichotomized AR level by the median was a significant prognostic factor of recurrence-free survival ($P = 0.0002$) and overall survival ($P = 0.004$). High AR levels were associated with a significantly improved recurrence-free survival in 207 patients with early-stage estrogen/progesterone receptor – positive tumors after adjuvant hormonal therapy. A trend ($P = 0.07$) was found toward higher AR expression in *PIK3CA* mutant versus *PIK3CA* wild-type triple-negative breast tumors.

Conclusions: AR levels may represent a prognostic marker in breast cancers and may provide a valuable tool for selecting treatment. There was an association of *PIK3CA* mutation (kinase domain) with increased AR levels.

Authors' Affiliations: Departments of ¹Breast Medical Oncology, ²Systems Biology, ³Surgical Oncology, and ⁴Gynecology Medical Oncology, and ⁵Division of Quantitative Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas; ⁶Breast Cancer Medicine Service, Solid Tumor Division, Department of Medicine, and ⁷Department of Pathology and Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center and Department of Pathology, Weill Cornell Medical College, New York, New York
Received 7/9/08; revised 10/13/08; accepted 11/1/08; published OnlineFirst 3/10/09.

Grant support: Kleberg Center for Molecular Markers at M.D. Anderson Cancer Center; American Society of Clinical Oncology Career Development Award; National Cancer Institute grants 1K23CA121994-01 and 1R21CA120248-01 (A.M. Gonzalez-Angulo); and The Susan G. Komen Foundation grant FAS0703849 (A.M. Gonzalez-Angulo, B.T. Hennessy, and G.B. Mills).

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *advertisement* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Note: The authors acknowledge, in particular, William Gerald's contribution and leadership. He will be missed.

Requests for reprints: Ana M. Gonzalez-Angulo, Department of Breast Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Unit 1354, 1515 Holcombe Boulevard, Houston, TX 77030. Phone: 713-792-2817; Fax: 713-794-4385; E-mail: agonzalez@mdanderson.org.

© 2009 American Association for Cancer Research.

doi:10.1158/1078-0432.CCR-08-1763

The androgen receptor (AR), a member of the steroid receptor subfamily, is expressed in >70% of breast cancers (1–4) and has been implicated in breast cancer pathogenesis (1–5). There is evidence that the androgen signaling pathway may play a critical role in breast carcinogenesis through the activation of a number of estrogen-responsive genes as observed in other tumors (2, 6–14). Other pathology studies have shown that the direct AR-mediated action of androgens could be the major mechanism used by androgens to influence the growth of breast carcinomas independent of estrogen and progesterone receptors (3, 15). Preclinical studies have shown that androgen action in breast cancer cell lines is cell-type specific and results in either stimulation or inhibition of proliferation (16). Further, androgen-induced regulation of proliferation has been reported to occur through both AR-mediated and AR-independent mechanisms, the latter possibly a result of active metabolites of dihydrotestosterone with estrogenic-like actions (17). A recent genome-wide expression analysis of 99 primary breast cancer samples and 8 breast cancer cell lines identified a subset of estrogen receptor (ER)-negative/progesterone receptor (PR)-negative tumors with

Translational Relevance

The androgen receptor (AR), a member of the steroid receptor subfamily, is expressed in >70% of breast cancers and has been implicated in breast cancer pathogenesis. We show an association of *PIK3CA* mutation (kinase domain) with increased AR levels and that AR levels may represent a prognostic marker in breast cancers. AR expression and PI3K pathway aberrations, including *PIK3CA* mutations, are common in breast cancer and show significant concordance, possibly pointing to an important interaction between these two signaling pathways in breast carcinogenesis. Patients with *PIK3CA* mutant breast tumors may benefit from androgen blockade alone or from androgen blockade added to other (e.g., cytotoxic or PI3K-targeted) therapies.

positivity and the presence of *PIK3CA* mutations has been shown in a distinct molecular subset of ER/PR-negative but AR-positive breast tumors possessing a hormonally regulated molecular phenotype (14, 23).

The objectives of the current study were to examine AR levels overall by tumor subtype and by *PIK3CA* domain mutation status (helical versus kinase domain, mutant versus wild-type tumors) in a large series of breast cancers and to assess the impact of AR expression on relapse-free survival (RFS) and overall survival (OS) in all breast cancers and within each breast tumor subtype defined with the use of clinical criteria.

Patients and Methods

Human tumor samples. Three hundred and forty-seven primary breast tumors were obtained from the breast tissue frozen tumor bank at M.D. Anderson Cancer Center. All specimens were collected under Institutional Review Board-approved protocols. These breast tumors were subdivided into three clinically relevant categories defined by immunohistochemistry for ER and PR status, and by immunohistochemistry, fluorescence in situ hybridization, and/or reverse-phase protein lysate array (22) for human epidermal growth factor receptor 2 (HER2) status. Thus, the 347 tumors included 97 triple-negative (TN), 207 ER-positive and/or PR-positive and HER2-negative, and 43 HER2-positive breast cancers.

Reverse-phase protein lysate microarray. Protein was extracted from the human tumors and reverse-phase protein lysate microarray was done in our laboratory as described previously (24–27). Briefly, lysis buffer was used to lyse frozen tumors by homogenization. Tumor lysates were normalized to 1 μ g/ μ L concentration with the use of bicinchoninic acid assay and were boiled with 1% SDS, and the supernatants were manually diluted in six or eight 2-fold serial dilutions with lysis buffer. An Aushon Biosystems 2470 arrayer created 1,056 sample arrays on nitrocellulose-coated FAST slides (Schleicher & Schuell BioScience, Inc.) from the serial dilutions. A slide was then probed with a validated primary AR antibody (Epitomics), and the signal was amplified with a DakoCytomation catalyzed system. A secondary antibody was used as a starting point for amplification. The slides were scanned, analyzed, and quantitated with the use of the Microvigene software (VigeneTech Inc.) to generate serial dilution signal intensity curves for each sample with the logistic fit model: $\ln(y) = a + (b - a)/(1 + \exp \{c * [d - \ln(x)]\})$. A representative natural logarithmic value of each sample curve on the slide (curve average) was then used as a relative quantification of the amount of each protein in

Table 1. Patient characteristics

Characteristic		Overall	Low AR (<-0.0852)	High AR (\geq -0.0852)	P value
Age (y)	Median range	59 (23–89)	55 (23–84)	65 (30–89)	—
	I	69 (20%)	28 (16%)	42 (24%)	0.09
Stage	II	212 (61%)	100 (58%)	109 (63%)	0.38
	III	66 (19%)	45 (26%)	23 (13%)	0.002
Tumor grade	1	61 (17%)	14 (8%)	45 (26%)	<0.001
	2	105 (30%)	29 (16%)	78 (45%)	<0.001
Tumor grade	3	181 (52%)	130 (75%)	51 (29%)	<0.001
	HER2 positive	43 (12%)	26 (15%)	17 (10%)	0.14
Breast cancer subtype	ER and/or PR positive	207 (60%)	66 (38%)	141 (81%)	<0.001
	Triple receptor negative	97 (28%)	81 (47%)	16 (9%)	<0.001
PIK3CA mutation	Helical	23 (7%)	11 (6%)	12 (7%)	1.0
	Kinase	55 (16%)	19 (11%)	36 (21%)	0.01
	Wild type	269 (78%)	143 (83%)	126 (72%)	0.03

Table 2. AR expression by tumor subtype and by *PIK3CA* mutations

AR expression by tumor subtype						
	Mean AR	SD AR	N	F-test P value	Versus HER2+ P value	Versus ER+ and/or PR+ P value
HER2+	0.04743	1.109	43	<0.0001	—	—
ER+ and/or PR+	0.24175	0.739	207		0.155	—
TN	-0.81954	0.82	97		<0.0001	<0.0001

AR expression by <i>PIK3CA</i> mutation type						
	Mean AR	SD AR	N	F-test P value	Versus helical P value	Versus kinase P value
Helical	-0.111627	0.7998	23	<0.0001	—	—
Kinase	0.43001	0.9954	55		0.017	—
Wild type	0.1803036	0.902	269		0.729	<0.0001

each sample. The level of AR in each sample was expressed as a log-mean centered value after correction for protein loading with the use of the average expression levels of >50 proteins as previously described (22, 24–27).

Mass spectroscopy-based approach evaluating single-nucleotide polymorphisms. DNA was extracted from frozen tumors with the use of a QIAamp Micro Kit (Qiagen Inc.) according to the manufacturer's instructions. A mass spectroscopy-based approach evaluating single-nucleotide polymorphisms was used to detect known mutations in *PIK3CA* (PIK3CA_A1046V, PIK3CA_C420R, PIK3CA_E110K, PIK3CA_E418K, PIK3CA_E453K, PIK3CA_E542K, PIK3CA_E545K, PIK3CA_F909L, PIK3CA_G1049R, PIK3CA_G451L456_V, PIK3CA_H1047L, PIK3CA_H1047R, PIK3CA_H1047Y, PIK3CA_H701P, PIK3CA_K111N, PIK3CA_M1043V, PIK3CA_N345K, PIK3CA_P539R, PIK3CA_Q060K, PIK3CA_Q546E, PIK3CA_R088Q, PIK3CA_S405F, and PIK3CA_T1025S; refs. 22, 28, 29). PCR and extension primers for *PIK3CA* were designed with the Sequenom, Inc. Assay Design. PCR-amplified DNA was cleaned with the use of EXO-SAP (Sequenom) primer extended by iPLEX chemistry, desalted with Clean Resin (Sequenom), and spotted onto Spectrochip matrix chips with the use of a nano-dispenser (Samsung). The chips were run in duplicate on a Sequenom matrix-assisted laser desorption ionization-time of flight MassARRAY system. Sequenom Typer Software and visual inspection were used to

interpret mass spectra. Reactions in which >15% of the resultant mass ran in the mutant site in both reactions were scored as positive.

Statistical methods. Baseline patient characteristics were calculated overall and by AR expression group with medians and ranges for age, frequency, and percentages for all other characteristics. Means and SDs were generated for AR expression overall by tumor subtype and by *PIK3CA* domain mutation. Linear regression models were used to determine if the mean AR expression was different by tumor subtype and *PIK3CA* mutation status. Two-sample *t* tests were then used to identify pair-wise differences. A frequency table was created to examine the distribution of *PIK3CA* mutations among the various tumor subtypes.

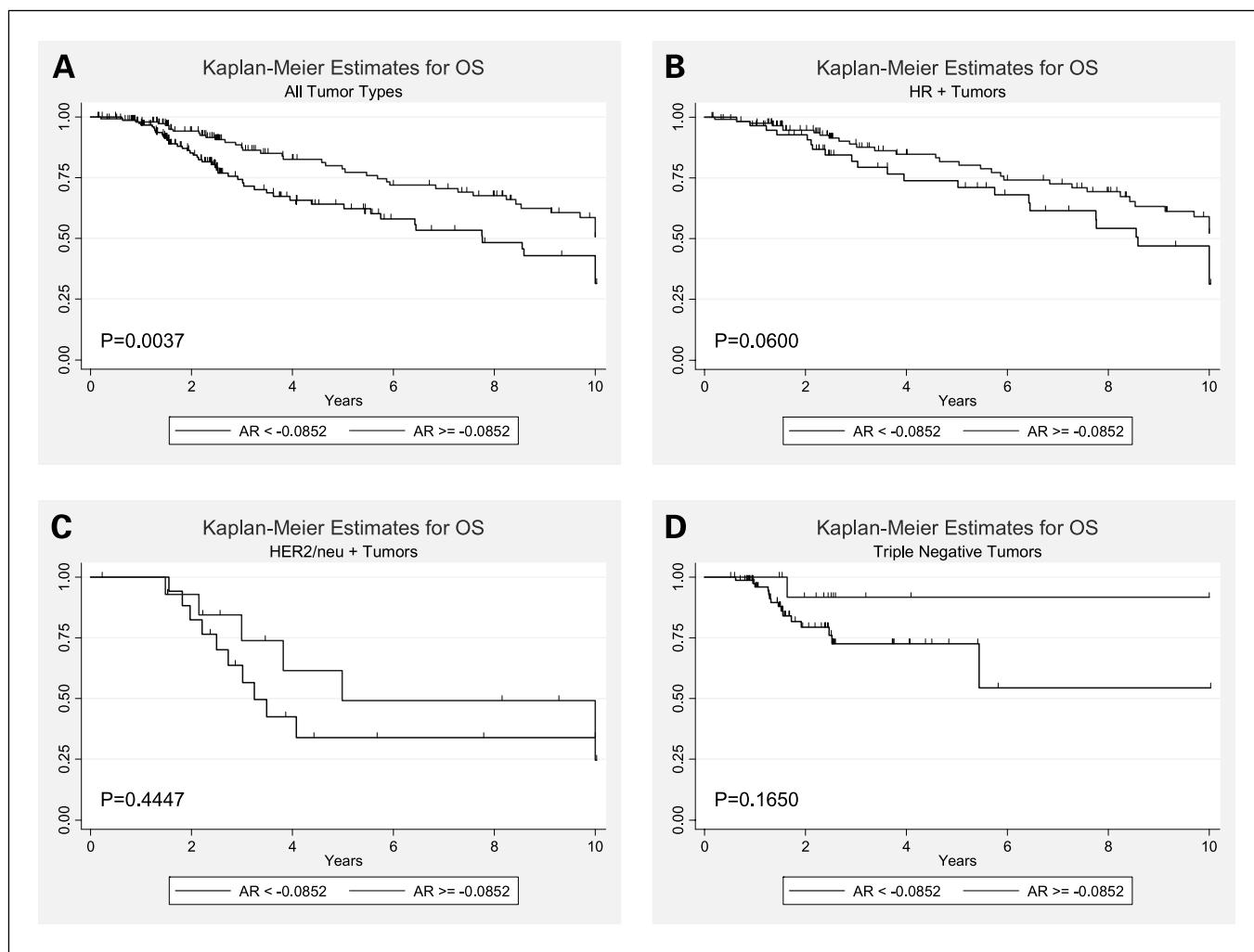

To examine survival, the time to death or censoring was computed in years since diagnosis for each patient, and RFS time to event was computed as years to first relapse or death after diagnosis for each patient. OS time was censored at the date of the last follow-up if death was not observed. RFS time was censored at the date of the last follow-up if no relapses were observed and death was not observed. RFS and OS probabilities were estimated nonparametrically with the use of the Kaplan-Meier product limit method. Log-rank tests were used to evaluate the equality of survival functions of AR expression, dichotomized with the median into low and high expression, overall and within each breast tumor subtype. Cox proportional hazards models were built; *t* tests were done to examine if mean AR expression was

Table 3. Survival estimates by AR level for all patients and by tumor type

RFS						
	No. of relapses	No.	5-y survival	95% CI upper	95% CI lower	Log-rank P value
Overall	AR < -0.085	71	0.5238	0.4154	0.6213	0.0002
	AR ≥ -0.085	53	0.7564	0.6647	0.8263	
HER2+	AR < -0.085	14	0.2122	0.0446	0.4595	0.1893
	AR ≥ -0.085	10	0.1674	0.0119	0.4866	
ER+ and/or PR+	AR < -0.085	30	0.6109	0.4575	0.7330	0.0144
	AR ≥ -0.085	39	0.8266	0.7329	0.8899	
TN	AR < -0.085	27	0.5286	0.3343	0.6901	0.3422
	AR ≥ -0.085	4	0.7467	0.3943	0.9123	

OS						
	No. of Deaths	No.	5-y survival	95% CI upper	95% CI lower	Log-rank P value
Overall	AR < -0.085	50	0.6407	0.5301	0.7318	0.0037
	AR ≥ -0.085	39	0.7859	0.6886	0.8559	
HER2+	AR < -0.085	10	0.3399	0.1187	0.5789	0.4447
	AR ≥ -0.085	6	0.4923	0.1627	0.7586	
ER+ and/or PR+	AR < -0.085	25	0.7385	0.5807	0.8444	0.0600
	AR ≥ -0.085	32	0.8176	0.7158	0.8857	
TN	AR < -0.085	15	0.7255	0.5663	0.8344	0.1650
	AR ≥ -0.085	1	0.9167	0.5390	0.9878	

Fig. 1. Kaplan-Meier estimates of the RFS of patients by AR levels. *A*, all patients, *B*, patients with ER-positive and/or PR-positive tumors. *C*, patients with HER2-positive tumors. *D*, patients with TN tumors.

significantly different between *PIK3CA* wild-type and *PIK3CA* mutant tumors. Similarly, Fisher's exact tests were used to examine if there was a relationship between *PIK3CA* mutation type and AR expression level. All statistical analyses were done with the use of Stata 10 (Stata Corp.).

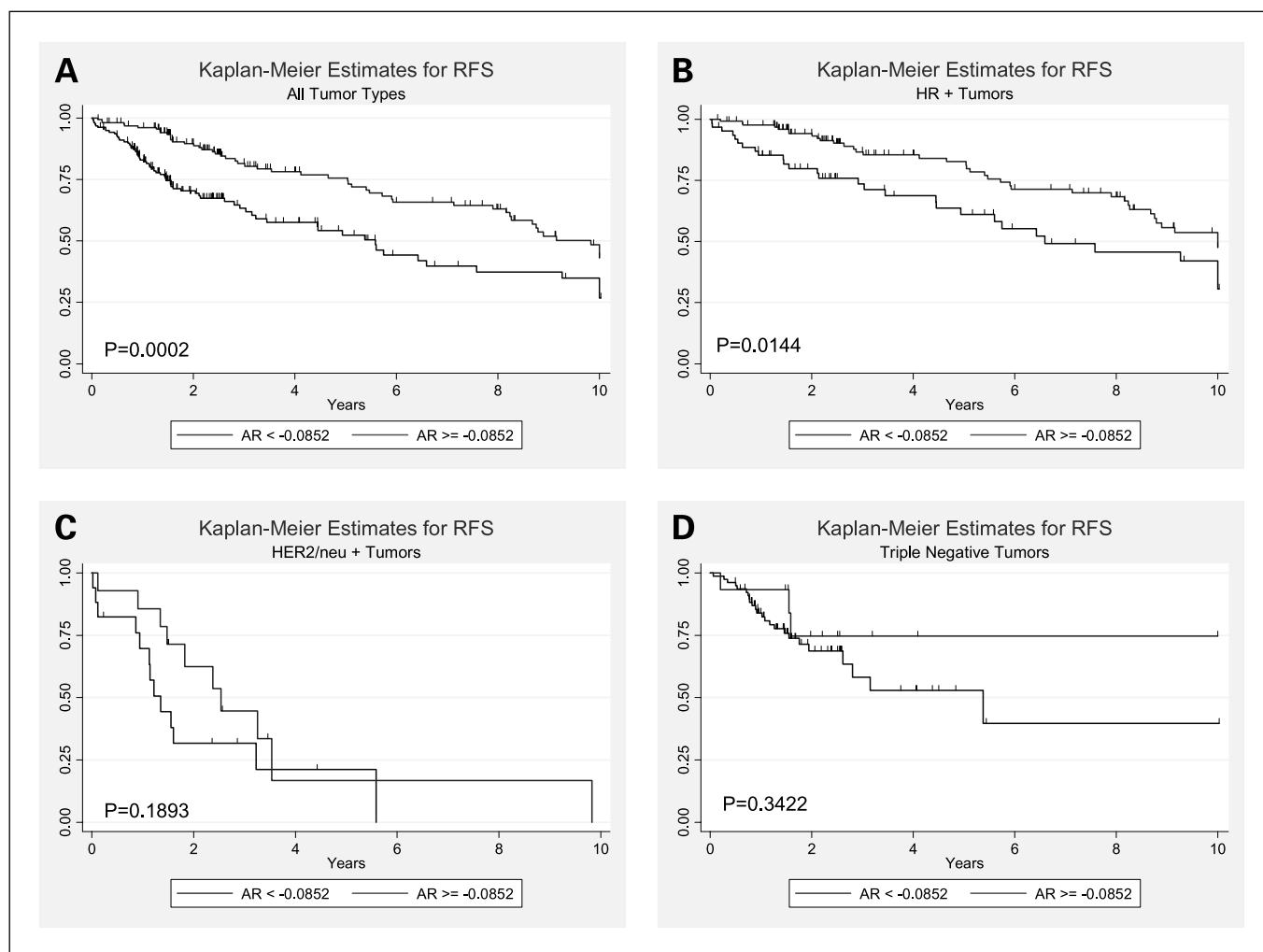
Results

Patient and breast tumor characteristics by AR expression level. Patients were diagnosed between 1989 and 2006. Patient characteristics are summarized in Table 1. The median age of the patients was 59 years (23-89 years). Sixty percent ($n = 207$) of patients had ER-positive and/or PR-positive breast cancer, 28% ($n = 97$) had TN tumors, and 12% ($n = 43$) had HER2-positive tumors. Patients with tumors expressing high [i.e., above median expression on reverse-phase protein lysate microarray (-0.0852)] AR levels tended to be older and have stage III breast cancer less frequently ($P = 0.002$), and their tumors were of lower nuclear grade ($P < 0.001$) and express ER and PR ($P < 0.001$). There were significant differences in mean AR levels between breast tumor subtypes (F-test, $P < 0.0001$ for both; Table 2). The mean AR levels were highest in ER-positive and/or PR-positive tumors followed by HER2-positive tumors

whereas TN breast cancers had the lowest AR levels. Pair-wise, all tumor subtype comparisons were significantly different (Table 2).

PIK3CA mutation status and AR expression. A mass spectroscopy-based approach with the use of methods designed to detect single-nucleotide polymorphisms was used to detect mutations in *PIK3CA* in the 347 breast cancers. This approach is more sensitive than conventional Sanger sequencing, having the potential to detect mutations that are present in only a subset of tumor cells or in tumors with high levels of normal cell contamination, which is commonly the case in breast cancer (28, 29). *PIK3CA* mutations were detected in 78 of 347 breast cancers (22.5%), in 57 of 207 (27.5%) ER-positive and/or PR-positive tumors, in 12 of 43 (27.9%) HER2-positive tumors, and in 9 of 97 (9.3%) TN tumors ($P = 0.04$). Of the 23 mutation sites in *PIK3CA* that were assessed, 55 mutations were detected in exon 20 that encode the catalytic domain of PI3K (51 *PIK3CA_H1047R*, 2 *PIK3CA_H1047L*, 1 *PIK3CA_H1047Y*, and 1 *PIK3CA_G1049R*), and 23 mutations were detected in exon 9 that encode the PI3K helical domain (20 *PIK3CA_E545K* and 3 *PIK3CA_E542K*). There were significant differences in AR expression levels by *PIK3CA* mutation status

(F-test, $P < 0.0001$; Table 2). In *PIK3CA* wild-type tumors and breast tumors with helical domain *PIK3CA* mutations, mean AR levels were significantly lower than in breast tumors with kinase domain *PIK3CA* mutations ($P = 0.017$ and $P < 0.0001$, respectively). AR expression did not differ significantly between *PIK3CA* wild-type tumors and tumors possessing helical domain *PIK3CA* mutations ($P = 0.729$; Table 2).


We also looked at the association between AR and *PIK3CA* kinase mutations by ER and/or PR group. For the ER-positive and/or PR-positive group, *PIK3CA* kinase mutations were present in 18.1% (low AR levels) versus 19.8% (high AR levels), $P = 0.776$. For the ER/PR-negative group, *PIK3CA* kinase mutations were present in 6.5% (low AR levels) versus 24.2% (high AR levels), $P = 0.004$.

Patient outcomes. At a median follow-up of 50.4 months, (range, 9.6–110.4 months), there have been 124 recurrences and 89 deaths. Dichotomized AR levels by the median (-0.0852) was a significant prognostic factor of OS ($P = 0.004$) and RFS ($P = 0.0002$). Five-year survival estimates are summarized in Table 3. The estimated 5-year OS rate was 79% [95% confidence interval (95% CI), 69%–86%] among patients with high AR levels and 64% (95% CI, 53%–73%) among

patients with low AR levels (Fig. 1A). The estimated 5-year RFS rate was 76% (95% CI, 66%–83%) among patients with high AR levels and 52% (95% CI, 41%–62%) among patients with low AR levels (Fig. 2A). AR was not a significant predictor of OS or RFS times within HER2-positive or TN breast tumors (Table 3). However, high AR expression was associated with significantly better RFS in patients with hormone receptor-positive breast cancer ($P = 0.016$), with a trend toward improved OS times in these patients ($P = 0.06$). Note that most patients with early stage ER-positive and/or PR-positive breast cancer were treated with adjuvant tamoxifen alone. Figures 1 and 2 show the Kaplan-Meier survival curves for RFS and OS for all patients and by breast tumor subtype.

When examining RFS and OS, neither *PIK3CA* mutation status nor a combination of *PIK3CA* mutation status and AR expression (high levels of AR and the presence of a *PIK3CA* mutation versus other tumors) proved to be significant predictors of patient outcomes across all patients or within each specific breast tumor subtype (data not shown).

Table 4 shows the results of the multivariable models for OS and RFS. After adjustment for ER and/or PR status, HER2 status, *PIK3CA* mutation status, and therapy (tamoxifen alone versus

Fig. 2. Kaplan-Meier estimates of the OS of patients by AR levels. *A*, all patients, *B*, patients with ER-positive and/or PR-positive tumors. *C*, patients with HER2-positive tumors. *D*, patients with TN tumors.

Table 4. Multivariate model of RFS and OS

Model	OS				RFS			
	HR	Lower CI	Upper CI	P value	HR	Lower CI	Upper CI	P value
AR (high versus low)	0.57	0.36	0.89	0.013	0.53	0.36	0.80	0.002
HER2 (positive versus negative)	1.80	0.88	3.71	0.108	3.21	1.81	5.71	<0.0001
ER and/or PR (positive versus negative)	1.07	0.43	2.64	0.885	0.83	0.38	1.79	0.626
PIK3CA (kinase mutation versus other)	1.02	0.58	1.77	0.950	1.21	0.74	1.98	0.437
Tamoxifen alone versus any chemotherapy	0.84	0.36	1.93	0.676	0.80	0.38	1.66	0.544

Abbreviation: HR, hazards ratio.

chemotherapy use), patients with breast cancer with high AR levels had a significantly decreased risk of both recurrence (hazards ratio, 0.53; 95% CI, 0.36-0.80; $P = 0.002$) and death (hazards ratio, 0.57; 95% CI, 0.36-0.89; $P = 0.013$) compared with patients with breast cancer with low AR levels.

AR levels in TN breast tumors. When looking at AR levels, specifically within the TN tumor subtype, a trend was seen toward higher AR expression in *PIK3CA* mutant (mean AR, -0.1578; SD, 1.0556) versus *PIK3CA* wild-type (mean AR, -0.8878; SD, 0.7587) tumors ($P = 0.07$). Of note, of the nine *PIK3CA* mutations in TN tumors, eight were within the kinase domain of *PIK3CA*. Further, we looked at the proportion of *PIK3CA* kinase mutations by AR level in the TN group: 3 of 16 (18.8%) TN tumors with high AR levels had a *PIK3CA* kinase mutation and 5 of 76 (6.2%) TN tumors with low AR levels had a *PIK3CA* kinase mutation ($P = 0.095$).

Discussion

AR expression varies significantly between different breast tumor subtypes and may be a significant predictor of breast cancer patient outcomes. Mean AR levels were highest in ER-positive and/or PR-positive followed by HER2-positive tumors. TN breast cancers showed the lowest AR levels. Patients with high AR levels had a more favorable prognosis as shown by longer RFS and OS times; this finding was confirmed by multivariate analysis. However, within each breast cancer subtype, these differences were not statistically significant with the exception that ER-positive and/or PR-positive breast cancer patients whose tumors possess high AR levels show significantly improved RFS times. Because most patients with early-stage ER-positive and/or PR-positive breast cancer in our study were treated with adjuvant tamoxifen, AR, like PR, may be a predictive factor for benefit from adjuvant hormonal therapy.

AR is expressed in >70% of breast cancers (1-4) and has been directly implicated in breast cancer pathogenesis (1-5). Androgen signaling may also activate estrogen-responsive genes (3, 6-17). ER-negative and/or PR-negative breast cancers represent ~30% of all breast cancers and are known to have a more aggressive clinical course, partly because these tumors are more likely to be poorly differentiated and of higher histologic grade (30, 31). Moinfar et al. (12) studied the frequency of AR expression with the use of immunohistochemistry in 200 cases of breast carcinoma and found 60% of all invasive carcinomas and 46% of ER-negative invasive carcinomas to be AR positive. Further, among poorly differentiated invasive carcinomas, 39% were ER and PR negative but AR positive.

Because preclinical work suggests that ER/PR-negative AR-positive breast cancer cells may respond to antiandrogen therapy (32, 33), the latter therapy is now being explored in this patient population. We used a different method, reverse-phase protein lysate microarray, to measure AR. Although the limitations of this technology may bring in the issue of tissue heterogeneity and stromal contamination avoided by immunohistochemistry, reverse-phase protein lysate microarray provides absolute quantification rather than simply assigning samples as "positive" or "negative". However, we did explore whether AR expression was dichotomously expressed in TN breast tumors and found that 81 of 97 (83.5%) TN tumors had low AR levels and 16 of 97 (16.5%) tumors had high AR levels.

In targeting AR with androgen-based hormonal therapy in ER-negative and/or PR-negative breast cancer, it may be necessary to take into consideration potential interactions between AR and other tumor growth-related factors. We and others have previously shown that PI3K pathway aberrations are common in breast cancer, pointing to a critical role for this signaling pathway in breast carcinogenesis (22, 30). In a retrospective analysis of the incidence of *PIK3CA* mutation status in 98 invasive breast cancers at Memorial Sloan-Kettering Cancer Center, a significant positive correlation between nuclear steroid receptor status and *PIK3CA* mutation status was identified, with 85% of *PIK3CA*-mutated breast cancers being ER, PR and/or AR positive (14, 23). We detected a similar distribution of *PIK3CA* mutations within breast cancer subtypes defined by hormone receptor (ER/PR) status along with a relatively high frequency of mutations in HER2-positive breast tumors. In addition, we found that breast cancers with kinase domain *PIK3CA* mutations expressed significantly higher levels of AR than breast cancers with helical domain *PIK3CA* mutations or with a wild-type *PIK3CA* gene in the ER/PR-negative tumors ($P = 0.004$). Further, in the TN breast tumors within our series, there was a trend toward *PIK3CA* mutant tumors showing significantly higher AR expression than *PIK3CA* wild-type tumors. This trend maintained when looking particularly at kinase mutations. Consistent with this, in the retrospective study from Memorial Sloan-Kettering, investigators showed a significant association between AR positivity and the presence of *PIK3CA* mutations to be particularly striking in a distinct molecular subset of ER/PR-negative but AR-positive tumors (14, 23). Indeed, 80% of the tumors within this subset possessed *PIK3CA* mutations, with the kinase domain *PIK3CA* mutation being over-represented in comparison with the helical domain mutation.

Preclinical and clinical evidence suggests that androgens and the androgen signaling pathway may play a critical role in breast

carcinogenesis in some cases. High AR expression is likely to be associated with a good prognosis in women with hormone receptor-positive breast cancer after adjuvant hormonal therapy. AR expression and PI3K pathway aberrations, including *PIK3CA* mutations, are common in breast cancer and show significant concordance, possibly pointing to an important interaction between these two signaling pathways in breast carcinogenesis.

References

1. Birrell SN, Hall RE, Tilley WD. Role of the androgen receptor in human breast cancer. *J Mammary Gland Biol Neoplasia* 1998;3:95–103.
2. Brys M. Androgens and androgen receptor: do they play a role in breast cancer? *Med Sci Monit* 2000;6:433–8.
3. Liao DJ, Dickson RB. Roles of androgens in the development, growth, and carcinogenesis of the mammary gland. *J Steroid Biochem Mol Biol* 2002;80:175–89.
4. Langer M, Kubista E, Schemper M, Spona J. Androgen receptors, serum androgen levels and survival of breast cancer patients. *Arch Gynecol Obstet* 1990;247:203–9.
5. Kuenen-Boumeester V, Van der Kwast TH, Claassen CC, et al. The clinical significance of androgen receptors in breast cancer and their relation to histological and cell biological parameters. *Eur J Cancer* 1996;32A:1560–5.
6. Hall RE, Aspinall JO, Horsfall DJ, et al. Expression of the androgen receptor and an androgen-responsive protein, apolipoprotein D, in human breast cancer. *Br J Cancer* 1996;74:1175–80.
7. Soreide JA, Lea OA, Kvinnslund S. Progesterone-binding cyst protein (PBCP = GCDFP-24) and steroid hormone receptors as markers of differentiation in breast cancer. Inverse relation of distribution in normal and malignant tissue of the same breast. *Anticancer Res* 1991;11:1323–6.
8. Hall RE, Clements JA, Birrell SN, Tilley WD. Prostate-specific antigen and gross cystic disease fluid protein-15 are co-expressed in androgen receptor-positive breast tumours. *Br J Cancer* 1998;78:360–5.
9. Hackenberg R, Schulz KD. Androgen receptor mediated growth control of breast cancer and endometrial cancer modulated by antiandrogen- and androgen-like steroids. *J Steroid Biochem Mol Biol* 1996;56:113–7.
10. Honma N, Sakamoto G, Akiyama, et al. Breast carcinoma in women over the age of 85: distinct histological pattern and androgen, oestrogen, and progesterone receptor status. *Histopathology* 2003;42:120–7.
11. Riva C, Dainese E, Caprara G, et al. Immunohistochemical study of androgen receptors in breast carcinoma. Evidence of their frequent expression in lobular carcinoma. *Virchows Arch* 2005;447:695–700.
12. Moinfar F, Okcu M, Tsyrovscky O, et al. Androgen receptors frequently are expressed in breast carcinomas: potential relevance to new therapeutic strategies. *Cancer* 2003;98:703–11.
13. Isola JJ. Immunohistochemical demonstration of androgen receptor in breast cancer and its relationship to other prognostic factors. *J Pathol* 1993;170:31–5.
14. Doane AS, Danso M, Lal P, et al. An estrogen receptor-negative breast cancer subset characterized by a hormonally regulated transcriptional program and response to androgen. *Oncogene* 2006;25:3994–4008.
15. Labrie F, The VL, Labrie C, et al. Endocrine and intracrine sources of androgens in women: inhibition of breast cancer and other roles of androgens and their precursor dehydroepiandrosterone. *Endocr Rev* 2003;24:152–82.
16. Birrell SN, Bentel JM, Hickey TE, et al. Androgens induce divergent proliferative responses in human breast cancer cell lines. *J Steroid Biochem Mol Biol* 1995;52:459–67.
17. Hackenberg R, Turgetto I, Filmer A, Schulz KD. Oestrogen and androgen stimulation and inhibition of proliferation by androst-5-ene-3-β, 17-β diol in human mammary cancer cells. *J Steroid Biochem Molec Biol* 1993;46:597–603.
18. Perou C, Sørlie T, Eisen MB, van de Rijn M, Jeffrey S. Molecular portraits of human breast tumours. *Nature* 2000;406:747–52.
19. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. *Nat Rev Drug Discov* 2005;4:988–1004.
20. Bachman KE, Argani P, Samuels Y, et al. The *PIK3CA* gene is mutated with high frequency in human breast cancers. *Cancer Biol Ther* 2004;3:772–5.
21. Kang S, Bader AG, Vogt PK. Phosphatidylinositol 3-kinase mutations identified in human cancer are oncogenic. *Proc Natl Acad Sci U S A* 2005;102:802–7.
22. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, et al. An integrative genomic and proteomic analysis of *PIK3CA*, PTEN and AKT mutations in breast cancer. *Cancer Res* 2008;68:6084–91.
23. Doane AS, Moynahan ME, Zhang L, Hudis C, Gerald WL. *PIK3CA* mutation is frequent in class A estrogen receptor-negative breast cancer and contributes to the distinct molecular profile. *Breast Cancer Res Treat* 2006;100:S293.
24. Tibes R, Qiu Y, Lu Y, Hennessy B, Mills GB, Kornblau S. Reverse phase protein array (RPPA). Validation of a novel proteomic technology and utility for analysis of primary leukemia specimens and hematopoietic stem cells. *Mol Cancer Ther* 2006;5:2512–21.
25. Liang J, Shao SH, Xu ZX, et al. The energy sensing LKB1-AMPK pathway regulates p27kip1 phosphorylation mediating the decision to enter autophagy or apoptosis. *Nat Cell Biol* 2007;9:218–24.
26. Hu J, He X, Baggerly KA, Coombes KR, Hennessy BT, Mills GB. Non-parametric quantification of protein lysate arrays. *Bioinformatics* 2007;23:1986–94.
27. Hennessy BT, Lu Y, Poradosu E, et al. Quantified pathway inhibition as a pharmacodynamic marker facilitating optimal targeted therapy dosing: proof of principle with the AKT inhibitor perifosine. *Clin Cancer Res* 2007;13:7421–31.
28. Thomas RK, Baker AC, Debiasi RM, et al. High-throughput oncogene mutation profiling in human cancer. *Nat Genet* 2007;39:347–51.
29. Jurinke C, van den Boom D, Cantor CR, Koster H. The use of MassARRAY technology for high throughput genotyping. *Adv Biochem Eng Biotechnol* 2002;77:57–74.
30. Pichon MF, Broet P, Magdelenat H. Prognostic value of steroid receptors after long-term follow-up of 2257 operable breast cancers. *Br J Cancer* 1996;73:1545–51.
31. Parl FF, Schmidt BP, Dupont WD, Wagner RK. Prognostic significance of estrogen receptor status in breast cancer in relation to tumor stage, axillary node metastasis, and histopathologic grading. *Cancer* 1984;54:2237–42.
32. Hardin C, Pommier R, Calhoun K, Muller P, Jackson T, Pommier SE. New hormonal therapy for estrogen receptor-negative breast cancer. *World J Surg* 2007;31:1432–2323.
33. Garreau JR, Muller P, Pommier R, Pommier S. Transgenic introduction of androgen receptor into estrogen-receptor-, progesterone-receptor-, and androgen-receptor-negative breast cancer cells renders them responsive to hormonal manipulation. *Am J Surg* 2006;191:576–80.
34. Garcia-Echavarria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. *Oncogene* 2008;27:5511–26.

Patients with *PIK3CA* mutant TN breast tumors may benefit from androgen blockade alone or from androgen blockade added to other (e.g., cytotoxic or PI3K-targeted) therapies (34).

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.